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Abstract. Composite laminate are widely used in different industries as aerospace, naval and automobile. Developing
accurate models in order to represent manufactured components is necessary to aid the design of structural health
monitoring (SHM) systems. In addition, the most part of the SHM strategies consists on compare the intact state with
the damaged state to obtain a damage index. In this context, this work presents a model updating strategy to obtain the
input parameters used in a Finite Element Method (FEM), which represent the experimental dynamic behavior of a
composite plate. For this, a Kriging metamodel is chosen to reduce the computational cost of optimization process into
the model update. A set of finite element analyses are used to training the metamodel. After that, the kriging model is
used every time when the objective function is evaluated. This strategy provides a considerable reduction in the
computational time during the optimization process, where for this paper a PSO are going to be used. These results
are analyzed in order to evaluate the potentialities and limitations of the methodology. Therefore, the strategy
presented can be helpful in the study of damage detection systems that uses FEM as part of its process.
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1. INTRODUCTION

Finite Element Methods (FEM) are very useful to solve engineering problems when complex geometries or
phenomena are involved. Reliable finite element analyses can reduce the need for prototype testing and reduce the
design validation cost and time. These methods consist of represent the geometry by a high number of elements to solve
it. However, sometimes the elements number used to represent the structure is considerable large, or the method used to
solve the specific problem requires little time increments, resulting on time demanding process turning the simulation
unfeasible. In many real-life situations however, a deterministic analysis is not sufficient to assess the quality of a
design. In a design stage, some physical properties of the model may not be determined yet. But even in a design ready
for production, design tolerances and production inaccuracies introduce variability and uncertainty (De Munck et al.,
2008). In addition, the results obtained by FEM are strongly dependent of the inputs provided by the user. Thus, to
match numerical with experimental results, it is necessary the knowledge of the exact value for several parameters. To
overcome these issues, some strategies can be used, like the use of approximate models to represent the FEM and obtain
results without solve all the equations or use model update techniques as an alternative to find the right parameters to
set a simulation.

Model updating methods simultaneously utilize the structural response obtained by the FEM and the measured
structural response to calibrate mathematical modeling. Model update aims to reduce the errors between the results from
the numerical simulation compared to the results from the experimental data. In the literature, it is possible to find
methodologies to use model update via modal parameters even as Frequency Response Function, as presented by
Imregun and Visser (1991) and Mottershead and Friswell (1993). Model updating methods can be broadly classified
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into direct methods, which are essentially non-iterative ones, and the iterative methods. Direct methods are essentially
based on changes in the mass and stiffness matrix to obtain the results that better fitting on experimental data, even if
these changes are not physically meaningful (Baruch and Bar-ltzhack 1978; Berman and Nagy 1983; Lim 1990).
Iterative methods are based on minimizing an objective function that is generally a non-linear function of selected
updating parameters. Quite often eigenvalues, eigenvectors or response data are used to construct an objective function
(Collins et al., 1974; Chen and Garba, 1980; Kim et al., 1983). Recently, Zang et al. (2012) investigated a novel method
using the Equivalent Element Modal Strain Energy (EEMSE) and Equivalent Element Modal Kinetic Energy (EEMKE)
to localize errors in the finite element model, and applied to select parameters in the model updating process. The
results demonstrate the effectiveness of the method and show great potential for industrial application.

Sipple and Sanayei (2014) presented a frequency response function based finite element model updating method and
used to perform parameter estimation. The proposed method is used to calibrate the initial finite element model using
measured frequency response functions from the undamaged, intact structure. Stiffness properties, mass properties, and
boundary conditions of the initial model were estimated and updated. The usefulness of the proposed method for finite
element model updating is shown by being able to detect, locate, and quantify change in structural properties. Shadan et
al. (2016) validated a finite element model updating method using frequency response functions They used a
sensitivity-based model updating approach, which utilizes a pseudo-linear sensitivity equation. The method is applied to
identify the location and amount of the changes in structural parameters. The results indicate that the location and the
size of different level of changes in the structure can be properly identified by the method.

Sensitivity based optimization algorithms have the disadvantage that can be computationally expensive and have
difficulties to converge, mainly when applied to complex models. However, intelligent algorithms as Particle Swarm
Optimization (PSO), Genetic Algorithms (GA), Ant Colony (AC), etc., can avoid calculate the sensitivity. However,
theses algorithms need a high number of computation of the Finite Element Analysis problem, being time consuming
too. To work around this problem, metamodel techniques, which is known as approximate model or surrogate model,
can be used to turn model update a practical tool even for complex models. This technique considers the relationship
between the input and output as a black-box system, and other system information, such as internal process of dynamic
analysis is not required. It can create a fast running surrogate model to replace the exact FEA, and then the solving time
of optimization will be reduced significantly. Thus, the potential of metamodel techniques is indisputable in model
updating field. A comparison about the most commonly used metamodels is presented by Simpson et al. (2001a). In
addition, Simpson et al. (2001b) investigated the use of kriging models as alternatives to traditional second-order
polynomial response surfaces for constructing global approximations for use in a real aerospace engineering
application, namely, the design of an aerospike nozzle. They find that the kriging models yield global approximations
that are slightly more accurate than the response surface models.

Kriging model is constructed based on the correlation function theory. Particularly, it is an exact interpolation of
given data and goes through all the sampling points. Therefore, the Kriging model usually has a higher approximation
accuracy than traditional Root Mean Square (RSM). Jeong et al. (2005) applied the kriging-based genetic algorithm to
aerodynamic design problems. The kriging model drastically reduces the computational time required for objective
function evaluation in the optimization (optimum searching) process. Based on the result of the functional ANOVA,
designers can reduce the number of design variables by eliminating those that have small effect on the objective
function. Huang et al. (2008) proposed a new method that extends the efficient global optimization to address stochastic
black-box systems. The method is based on a kriging meta-model that provides a global prediction of the objective
values and a measure of prediction uncertainty at every point. The results suggest that the proposed method has
excellent consistency and efficiency in finding global optimal solutions, and is particularly useful for expensive
systems.

Yuan and Guangchen (2009) presented the metamodeling capabilities of two methods, i.e. neural network (NN) and
Kriging approximation, in the context of simulation optimization. Preliminary research results reveal that Kriging
approximation is in general likely to be preferred. Khodaparast et al. (2011) solved the problem interval model updating
by using the Kriging method, and the good accuracy of Kriging method was illustrated by beam experiment. Liu et al.
(2014) calibrated the FEM based on the modal parameters of a complex structure, the Kriging model was taken as a
surrogate model. Dey et al. (2015) presented the Kriging model approach for stochastic free vibration analysis of
composite shallow doubly curved shells. The stochastic natural frequencies are expressed in terms of Kriging surrogate
models. The influence of random variation of different input parameters on the output natural frequencies is addressed.

In addition, it is very important to highlight the difficulty to find in the literature valuable scientific contributions to
develop accurate models to represent manufactured components to aid the design of structural health monitoring (SHM)
systems. In this context, this work presents a model updating strategy to obtain the input parameters used in a Finite
Element Method (FEM), which represent the experimental dynamic behavior of a composite plate. For this, a Kriging
metamodel is chosen to reduce the computational cost of optimization process into the model update. A set of finite
element analyses are used to training the metamodel. After that, the kriging model is used every time when the objective
function is evaluated. This strategy provides a considerable reduction in the computational time during the optimization
process, where for this paper a PSO are going to be used. These results are analyzed in order to evaluate the
potentialities and limitations of the proposed methodology in the context of SHM systems.
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2. METHODOLOGY

Regarding the high computational cost involved in dynamic analyses, this work proposes a strategy to use a Kriging
model in instead of FEM dynamic analyses during the process of model updating, as is shown in Figure 1.
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Figure 1. Methodology used for the model update strategy

Firstly, the Kriging model construction must to be done. For this, the procedure need a set of initial data from the
model, which should be represented by the Kriging approximation. During this step, an optimization problem is solved
aiming to define the coefficients for the Kriging estimator. To construct the Kriging model, a set of date composed by
values of design variables, and its respective results obtained by the FEM is used. Afterwards, the metamodel is ready
to represent the FEM during the model updating process. As aforementioned, the model update aims to find the best
parameters to set numerical analysis that results in a good representation with the experimental data. Thus, within the
model update process an optimization problem must to be run to find these parameters.

This work aims to use the model update process to find the best input parameters to use in the FEM and obtain a
good approximation to the experimental data. Then, the parameters used as design variables into the optimization of the
model update process are: Young’s modulus at fiber direction (E1;), Young’s modulus at normal to fiber direction (E,y),
Shear modulus in ply plane (G1,) and the plate thickness. These variables were chosen based on the previous study
provided by Souza et al. (2017), in this work, a screening design is conducted to identify the most significant variables
that affect the dynamic behavior. After that, a Particle Swarm Optimization (PSO) is used to carry on the model update
process, and find the best combination of the input parameters that results in a minimal difference from the numerical
modal frequency and the experimental modal frequency. As objective function these differences are evaluated at each
frequency using a Root Mean Square Error, and the optimization problem consists on minimize the sum of this
difference. The objective function can be stated as,

i_ iy 2
RMSE = ?:1 ((fnfgfe)) (1)

where £} is i" frequency mode from the numerical data, £.! is i"" frequency mode from the experimental data.

3. MODEL UPDATE USING FEA

As reference, a model update procedure has been carried out using FEA and PSO. From this model update, it is
possible to obtain the variables updated, and the time consuming to compare with the procedure using the kriging
method. In a first step, the model update has applied for the same experimental data, changing the PSO parameters. This
procedure allows identifying the better configuration via PSO algorithm. Table 1 shows the error, number of call
function and number of iterations for different configurations of; particle number (N), inertia parameter (w), cognitive
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parameter (¢,), social parameter (¢,). The cognitive parameter represents the effect of self-knowledge and the social
parameter is associated with the collective effect of the population (Vaz et al., 2013).

Table 1. PSO parameter testing results

N w | @ | ¢, | Error | Callfunction | Iterations | Convergence
16 | 05| 05| 05 | 0.140 512 32 NO
16 | 0.8 | 05| 0.5 | 0.090 496 31 NO
25 | 08| 02| 0.8 | 0.066 825 33 NO
40 | 06 | 05| 0.5 | 0.066 920 23 OK
40 | 06 | 05| 0.5 | 0.066 920 23 OK
50 | 06 | 05| 05 | 0.113 1450 29 OK
60 | 06 | 05| 05 | 0.113 1260 21 OK

The objective of this analysis is to obtain the better PSO configuration, concerning the convergence of the problem,
and the lowest number of call functions. Therefore, the configuration with N = 40, w = 0.6, ¢, = 0.5 and ¢, = 0.5 has
presented the better results. After that, using these PSO parameters and carrying out the model update procedure for
another experimental sets, it is possible to evaluate the updated values.

Table 2 presents the updated parameters resulted from the model update process. With these parameters it is
possible to evaluate the dynamic numerically behavior, and compare with the experimental data, to verify the quality of
the model update process.

Table 2. Updated variables results from FEA model update

E[GPa] E,,[GPa] Gp[GPa] Thickness [mm]
Plate 134.8536 9.8907 4.822 3.2724

Table 3 presents the numerical and experimental results obtained for the natural frequencies. Comparing the
experimental data with the numerical result obtained from the updated parameters, it is possible to note the good
approximation for the modes 1, 2, 4 and 5, resulting in a difference lower than 1%. Modes 3 and 6 are essentially
torsional modes, which are harder to consider in the design variables chosen, resulting in a difference around 2%.

Table 3. Comparison between FEA updated results and experimental results

Experimental Numerical Difference
f, [Hz] 104.1520 104.1878 0.0344%
f, [Hz] 139.8840 140.0312 0.1052%
f3 [Hz] 261.0910 253.5284 -2.8965%
fi[Hz] 320.6900 320.7774 0.0273%
fs [Hz] 367.0790 367.0878 0.0024%
fs [Hz] 411.4550 404.8923 -1.5950%

These results demonstrate the quality of the model update, showing how good the numerical model fits the
experimental data. However, the disadvantage of this method is the time consuming. For the case, the whole model
update process takes around 2 hours (desktop computer, memory: 4Gb, processor: intel i5), to run the 900 finite element
problems needed to converge the optimization process. Depending on the complexity of the problem, it could become
unfeasible due to the time required to simulate each finite element analysis in the optimization algorithm.

4. KRIGING MODEL CONSTRUCTION
The best linear unbiased predictor, also known as Kriging, is a surrogate model, frequently used to represent a physic

phenomenon or process, which is difficult to represent by numerical models or to measure experimentally. This paper
uses the ordinary Kriging, which assumes the form,
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y() = fTOB + z(x), O]

where z(x) is the realization of the stochastic process, f7(x) is a polynomial vector of training sample x, and B is the
coefficient of the linear regression. The fT (x) term approximates the drift of the Kriging model, and z(x) approximates
the local deviation of the Kriging model. In the Kriging model, a set of sample data X, with the observed responses y,
should be used to make a model allowing to predict the response in a new point x. First, it is necessary to correlate each
sample data with each other, using the basis function,

) Kk ogoi ol
COT'[XL,XI] = g~ 2j=19;(x; xj)Z' ©)]

where x]-i and x]-l are two training samples, k is the number of design variables and 6; is the unknown coefficient of
correlation. Then, the correlation matrix with all observed data can be constructed,

corl(1), )]+ corl(), (2]

P = : : 4)
cor[(x™), (xD)] -+ cor[(x™), (x™)]
And a covariance matrix,
Cov[X,X] = o?W. (5)

where, o2 is the square of the standard deviation. Then, the set of variables x is correlated in some way, described by
the matrix ¥. These correlations depend on the absolute distance between the sample points and parameters theta. To
find the better value for theta to fits the interpolation problem, it is necessary to maximize the likelihood of .
Therefore, the problem becomes an optimization problem with the form,

Min—(—gln(a 2)—%lnl‘l’l), (6)
1) Ty~ 1(y—
g2 = Iy 1w )
n
1Typ-1y,
H= 1Ty-11’ (8)

where u is the mean and 1 is a vector of ones. To solve this optimization problem, global methods usually produces the
best results, since it is not possible to differentiate the objective function. In this paper, a simple genetic algorithm is
used to find the best theta vector. The detailed development of these calculation can be found on Forrester et al. (2008).

When the Kriging model is constructed with the obtained 6;, it can be used to predict the output response at untried
location with unbiased estimation. The predicted response is given by,

Y() =+ 9Py — 1p), )

where, 1 is the correlation vector of the untried location and the sample points.

Therefore, once determined the values of theta for a given sample set, Kriging model can be used to predict any
other point. In this study 20 sample points have been chosen randomly, and one Kriging model was developed for each
natural frequency. Table 4 shows the results for each model.

Table 4. Kriging model coefficients

Mode 0, 0, 63 0,
1 50.9819 0.0106 7.5364 8.8166
2 0.2563 1.6861 0.2883 6.3691
3 0.1800 0.1831 0.8422 1.6571
4 50.5699 0.0015 0.0366 6.2119
5 52.5642 0.4028 0.1510 6.6605
6 53.9085 0.6790 0.1968 8.2307

To verify the quality of the Kriging predictor, some checking points are evaluated and compared with results
obtained by the FEM algorithm. Figure 2 presents the numerical data (FEM) and the values of the Kriging predictor.
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Figure 2. Frequency values of the checking points.

The Kriging model, constructed with the available data, demonstrates low error when predicting values between the
points used to training the model. However, for the check point one, the design variables are out of the range used as
data training, then the difference to the numerical model becomes higher. Therefore, these results show that the Kriging
model is well conditioned to be used as predictor in the model update process.

5. MODEL UPDATE USING KRIGING MODEL

The model update process was modified to include the Kriging predictor, i.e., call the Kriging model in instead of
the FEM. Then, the PSO algorithm searches for the best combination of design variables to fit the experimental results.
A reduction in the computational time is expected, since the Kriging model is faster than FEM to make the calculations.

In addition, using the Kriging model, the total time to carry out the model update procedure takes around 10
minutes (desktop computer, memory: 4Gb, processor: intel i5). The design variables resulted from this process is
presented in Table 5, and the comparison between the frequencies predicted with the Kriging model and the
experimental data is presented in Table 6. Also, Figure 3 shows the convergence of the optimization algorithm.

Table 5. Kriging model coefficients

E.1[GPa] E,,[GPa] G,[GPa] Thickness [mm]
Plate 128,7924 9,1055 5,0954 3,3916
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Table 6. Natural frequencies obtained with the Kriging model compared with the target experimental frequencies.

. . Relative
Experimental Kriging Difference
f1 [Hz] 104.1520 104.3708 0.2101%
f> [Hz] 139.8840 139.8839 -0.0001%
f5 [Hz] 261.0910 261.0917 0.0003%
fa [HZ] 320.6900 320.6866 -0.0011%
fs [Hz] 367.0790 367.4869 0.1111%
fe [Hz] 411.4550 405.4654 -1.4557%
~ Error
0.040 -
0.035 -
w
< 00301
3
0.025 1
0.020 -
0 5 10 15 20 2 30

iterations

Figure 3. Convergence of the PSO algorithm although iterations

The result obtained by the model update using the Kriging model fits the experimental data relatively well.
Considering only the Kriging predictor, the model update process has achieved response values with an error lower than
0,1% in some modes. Finally, the design variables obtained in the model update using Kriging are used as input in the
finite element algorithm. Table 7 shows the natural frequencies obtained using FEA, with the inputs defined by the
model updating using Kriging, the relative difference presented in this table is in relation of the FEA results and the
experimental data.

Table 7. Comparison between FEA results with experimental data and Kriging values.

f1 [HZ] f> [Hz] f3 [Hz] fa [HZ] fs [HZ] fe [HZ]
Experimental 104.15 139.88 261.09 320.69 367.08 411.46
FEA/Kriging 108.06 140.00 260.00 324.88 371.30 408.17

Difference FEA vs
Experimental

3.7522% | 0.0829% | -0.4179% | 1.3066% | 1.1499% | -0.7984%

The model update using the Kriging model shows excellent results in relation to computational time and accuracy.
This procedure can help to obtain a good approximation of values for design variables to be used in the computational
model in instead of to carry out a complete model update using FEA. The final design variables configuration obtained
with the procedure proposed in this paper, results in a better approximation for almost all modes, except for the first
mode. This behavior could be due to the lack of quality of the training samples used for the Kriging model, which is not
representing accurately the finite element model.
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6. CONCLUSIONS

Model update processes are very important in the engineering environment to calibrate numerical models. Using
some experimental data and an optimization procedure, it is possible to adjust the design variables to obtain a numerical
model equivalent to the physical phenomena. Metamodel techniques can simplify the FEA to a surrogate model as a fast
running model which can facilitate the application of the intelligent algorithms in model updating. Reducing
computational time and obtaining reliable results. This paper presented an analysis of a model update procedure
replacing the FEA for a Kriging model. Comparisons about the relative difference obtained from the model update
using FEA and the model update using Kriging have been done. The Kriging metamodel shows to be very promising to
be used in instead of the FEA to carry out a quick update of the main design variables, and then, utilize it in the FEM.
This procedure demonstrates to be very reliable, since the higher error obtained is around 3.7% and the lower one is
about 0.08%. It is important to remark that no kind of pre-processing has been used to choose the best points to training
the Kriging model, then future studies could be done to improve the results. This procedure can be used to define the
parameters to be monitored in a SHM system, and also how these parameters have influence on the process, helping
engineers to develop better SHM systems.
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