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Abstract. Composite laminate are widely used in different industries as aerospace, naval and automobile. Developing 

accurate models in order to represent manufactured components is necessary to aid the design of structural health 

monitoring (SHM) systems. In addition, the most part of the SHM strategies consists on compare the intact state with 

the damaged state to obtain a damage index. In this context, this work presents a model updating strategy to obtain the 

input parameters used in a Finite Element Method (FEM), which represent the experimental dynamic behavior of a 

composite plate. For this, a Kriging metamodel is chosen to reduce the computational cost of optimization process into 

the model update. A set of finite element analyses are used to training the metamodel. After that, the kriging model is 

used every time when the objective function is evaluated. This strategy provides a considerable reduction in the 

computational time during the optimization process, where for this paper a PSO are going to be used. These results 

are analyzed in order to evaluate the potentialities and limitations of the methodology. Therefore, the strategy 

presented can be helpful in the study of damage detection systems that uses FEM as part of its process. 
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1. INTRODUCTION 

 

Finite Element Methods (FEM) are very useful to solve engineering problems when complex geometries or 

phenomena are involved. Reliable finite element analyses can reduce the need for prototype testing and reduce the 

design validation cost and time. These methods consist of represent the geometry by a high number of elements to solve 

it. However, sometimes the elements number used to represent the structure is considerable large, or the method used to 

solve the specific problem requires little time increments, resulting on time demanding process turning the simulation 

unfeasible. In many real-life situations however, a deterministic analysis is not sufficient to assess the quality of a 

design. In a design stage, some physical properties of the model may not be determined yet. But even in a design ready 

for production, design tolerances and production inaccuracies introduce variability and uncertainty (De Munck et al., 

2008). In addition, the results obtained by FEM are strongly dependent of the inputs provided by the user. Thus, to 

match numerical with experimental results, it is necessary the knowledge of the exact value for several parameters. To 

overcome these issues, some strategies can be used, like the use of approximate models to represent the FEM and obtain 

results without solve all the equations or use model update techniques as an alternative to find the right parameters to 

set a simulation. 

 Model updating methods simultaneously utilize the structural response obtained by the FEM and the measured 

structural response to calibrate mathematical modeling. Model update aims to reduce the errors between the results from 

the numerical simulation compared to the results from the experimental data. In the literature, it is possible to find 

methodologies to use model update via modal parameters even as Frequency Response Function, as presented by 

Imregun and Visser (1991) and Mottershead and Friswell (1993). Model updating methods can be broadly classified 
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into direct methods, which are essentially non-iterative ones, and the iterative methods. Direct methods are essentially 

based on changes in the mass and stiffness matrix to obtain the results that better fitting on experimental data, even if 

these changes are not physically meaningful (Baruch and Bar-Itzhack 1978; Berman and Nagy 1983; Lim 1990). 

Iterative methods are based on minimizing an objective function that is generally a non-linear function of selected 

updating parameters. Quite often eigenvalues, eigenvectors or response data are used to construct an objective function 

(Collins et al., 1974; Chen and Garba, 1980; Kim et al., 1983). Recently, Zang et al. (2012) investigated a novel method 

using the Equivalent Element Modal Strain Energy (EEMSE) and Equivalent Element Modal Kinetic Energy (EEMKE) 

to localize errors in the finite element model, and applied to select parameters in the model updating process. The 

results demonstrate the effectiveness of the method and show great potential for industrial application. 

Sipple and Sanayei (2014) presented a frequency response function based finite element model updating method and 

used to perform parameter estimation. The proposed method is used to calibrate the initial finite element model using 

measured frequency response functions from the undamaged, intact structure. Stiffness properties, mass properties, and 

boundary conditions of the initial model were estimated and updated. The usefulness of the proposed method for finite 

element model updating is shown by being able to detect, locate, and quantify change in structural properties. Shadan et 

al. (2016) validated a finite element model updating method using frequency response functions They used a 

sensitivity-based model updating approach, which utilizes a pseudo-linear sensitivity equation. The method is applied to 

identify the location and amount of the changes in structural parameters. The results indicate that the location and the 

size of different level of changes in the structure can be properly identified by the method. 

Sensitivity based optimization algorithms have the disadvantage that can be computationally expensive and have 

difficulties to converge, mainly when applied to complex models. However, intelligent algorithms as Particle Swarm 

Optimization (PSO), Genetic Algorithms (GA), Ant Colony (AC), etc., can avoid calculate the sensitivity. However, 

theses algorithms need a high number of computation of the Finite Element Analysis problem, being time consuming 

too. To work around this problem, metamodel techniques, which is known as approximate model or surrogate model, 

can be used to turn model update a practical tool even for complex models. This technique considers the relationship 

between the input and output as a black-box system, and other system information, such as internal process of dynamic 

analysis is not required. It can create a fast running surrogate model to replace the exact FEA, and then the solving time 

of optimization will be reduced significantly. Thus, the potential of metamodel techniques is indisputable in model 

updating field. A comparison about the most commonly used metamodels is presented by Simpson et al. (2001a). In 

addition, Simpson et al. (2001b) investigated the use of kriging models as alternatives to traditional second-order 

polynomial response surfaces for constructing global approximations for use in a real aerospace engineering 

application, namely, the design of an aerospike nozzle. They find that the kriging models yield global approximations 

that are slightly more accurate than the response surface models. 

Kriging model is constructed based on the correlation function theory. Particularly, it is an exact interpolation of 

given data and goes through all the sampling points. Therefore, the Kriging model usually has a higher approximation 

accuracy than traditional Root Mean Square (RSM). Jeong et al. (2005) applied the kriging-based genetic algorithm to 

aerodynamic design problems. The kriging model drastically reduces the computational time required for objective 

function evaluation in the optimization (optimum searching) process. Based on the result of the functional ANOVA, 

designers can reduce the number of design variables by eliminating those that have small effect on the objective 

function. Huang et al. (2008) proposed a new method that extends the efficient global optimization to address stochastic 

black-box systems. The method is based on a kriging meta-model that provides a global prediction of the objective 

values and a measure of prediction uncertainty at every point. The results suggest that the proposed method has 

excellent consistency and efficiency in finding global optimal solutions, and is particularly useful for expensive 

systems. 

Yuan and Guangchen (2009) presented the metamodeling capabilities of two methods, i.e. neural network (NN) and 

Kriging approximation, in the context of simulation optimization. Preliminary research results reveal that Kriging 

approximation is in general likely to be preferred. Khodaparast et al. (2011) solved the problem interval model updating 

by using the Kriging method, and the good accuracy of Kriging method was illustrated by beam experiment. Liu et al. 

(2014) calibrated the FEM based on the modal parameters of a complex structure, the Kriging model was taken as a 

surrogate model. Dey et al. (2015) presented the Kriging model approach for stochastic free vibration analysis of 

composite shallow doubly curved shells. The stochastic natural frequencies are expressed in terms of Kriging surrogate 

models. The influence of random variation of different input parameters on the output natural frequencies is addressed. 

In addition, it is very important to highlight the difficulty to find in the literature valuable scientific contributions to 

develop accurate models to represent manufactured components to aid the design of structural health monitoring (SHM) 

systems. In this context, this work presents a model updating strategy to obtain the input parameters used in a Finite 

Element Method (FEM), which represent the experimental dynamic behavior of a composite plate. For this, a Kriging 

metamodel is chosen to reduce the computational cost of optimization process into the model update. A set of finite 

element analyses are used to training the metamodel. After that, the kriging model is used every time when the objective 

function is evaluated. This strategy provides a considerable reduction in the computational time during the optimization 

process, where for this paper a PSO are going to be used. These results are analyzed in order to evaluate the 

potentialities and limitations of the proposed methodology in the context of SHM systems. 
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2. METHODOLOGY 

 

Regarding the high computational cost involved in dynamic analyses, this work proposes a strategy to use a Kriging 

model in instead of FEM dynamic analyses during the process of model updating, as is shown in Figure 1. 

 

 
 

Figure 1. Methodology used for the model update strategy 

 

Firstly, the Kriging model construction must to be done. For this, the procedure need a set of initial data from the 

model, which should be represented by the Kriging approximation. During this step, an optimization problem is solved 

aiming to define the coefficients for the Kriging estimator. To construct the Kriging model, a set of date composed by 

values of design variables, and its respective results obtained by the FEM is used. Afterwards, the metamodel is ready 

to represent the FEM during the model updating process. As aforementioned, the model update aims to find the best 

parameters to set numerical analysis that results in a good representation with the experimental data. Thus, within the 

model update process an optimization problem must to be run to find these parameters.  

This work aims to use the model update process to find the best input parameters to use in the FEM and obtain a 

good approximation to the experimental data. Then, the parameters used as design variables into the optimization of the 

model update process are: Young’s modulus at fiber direction (E11), Young’s modulus at normal to fiber direction (E22), 

Shear modulus in ply plane (G12) and the plate thickness. These variables were chosen based on the previous study 

provided by Souza et al. (2017), in this work, a screening design is conducted to identify the most significant variables 

that affect the dynamic behavior. After that, a Particle Swarm Optimization (PSO) is used to carry on the model update 

process, and find the best combination of the input parameters that results in a minimal difference from the numerical 

modal frequency and the experimental modal frequency. As objective function these differences are evaluated at each 

frequency using a Root Mean Square Error, and the optimization problem consists on minimize the sum of this 

difference. The objective function can be stated as, 

 

𝑅𝑀𝑆𝐸 =  ∑ √(
(𝑓𝑛

𝑖 −𝑓𝑒
𝑖)

𝑓𝑒
𝑖 )

2
6
𝑖=1           (1) 

 

where 𝑓𝑛
𝑖 is i

th
 frequency mode from the numerical data, 𝑓𝑒

𝑖 is i
th

 frequency mode from the experimental data. 

 

3. MODEL UPDATE USING FEA 

 

As reference, a model update procedure has been carried out using FEA and PSO. From this model update, it is 

possible to obtain the variables updated, and the time consuming to compare with the procedure using the kriging 

method. In a first step, the model update has applied for the same experimental data, changing the PSO parameters. This 

procedure allows identifying the better configuration via PSO algorithm. Table 1 shows the error, number of call 

function and number of iterations for different configurations of; particle number (N), inertia parameter (w), cognitive 
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parameter (φ1), social parameter (φ2). The cognitive parameter represents the effect of self-knowledge and the social 

parameter is associated with the collective effect of the population (Vaz et al., 2013). 

 

Table 1. PSO parameter testing results 

 

N w φ1 φ2 Error Call function Iterations Convergence 

16 0.5 0.5 0.5 0.140 512 32 NO 

16 0.8 0.5 0.5 0.090 496 31 NO 

25 0.8 0.2 0.8 0.066 825 33 NO 

40 0.6 0.5 0.5 0.066 920 23 OK 

40 0.6 0.5 0.5 0.066 920 23 OK 

50 0.6 0.5 0.5 0.113 1450 29 OK 

60 0.6 0.5 0.5 0.113 1260 21 OK 

 

The objective of this analysis is to obtain the better PSO configuration, concerning the convergence of the problem, 

and the lowest number of call functions. Therefore, the configuration with N = 40, w = 0.6, φ1 = 0.5 and φ2 = 0.5 has 

presented the better results. After that, using these PSO parameters and carrying out the model update procedure for 

another experimental sets, it is possible to evaluate the updated values. 

Table 2 presents the updated parameters resulted from the model update process. With these parameters it is 

possible to evaluate the dynamic numerically behavior, and compare with the experimental data, to verify the quality of 

the model update process.  

 

Table 2. Updated variables results from FEA model update 

 

 E11[GPa] E22[GPa] G12[GPa] Thickness [mm] 

Plate 134.8536 9.8907 4.822 3.2724 

 

Table 3 presents the numerical and experimental results obtained for the natural frequencies. Comparing the 

experimental data with the numerical result obtained from the updated parameters, it is possible to note the good 

approximation for the modes 1, 2, 4 and 5, resulting in a difference lower than 1%. Modes 3 and 6 are essentially 

torsional modes, which are harder to consider in the design variables chosen, resulting in a difference around 2%. 

 

Table 3. Comparison between FEA updated results and experimental results 

 

 Experimental Numerical Difference 

f1 [Hz] 104.1520 104.1878 0.0344% 

f2 [Hz] 139.8840 140.0312 0.1052% 

f3 [Hz] 261.0910 253.5284 -2.8965% 

f4[Hz] 320.6900 320.7774 0.0273% 

f5 [Hz] 367.0790 367.0878 0.0024% 

f6 [Hz] 411.4550 404.8923 -1.5950% 

 

These results demonstrate the quality of the model update, showing how good the numerical model fits the 

experimental data. However, the disadvantage of this method is the time consuming. For the case, the whole model 

update process takes around 2 hours (desktop computer, memory: 4Gb, processor: intel i5), to run the 900 finite element 

problems needed to converge the optimization process. Depending on the complexity of the problem, it could become 

unfeasible due to the time required to simulate each finite element analysis in the optimization algorithm. 

 

4. KRIGING MODEL CONSTRUCTION 

 

The best linear unbiased predictor, also known as Kriging, is a surrogate model, frequently used to represent a physic 

phenomenon or process, which is difficult to represent by numerical models or to measure experimentally. This paper 

uses the ordinary Kriging, which assumes the form, 
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𝑦(𝑥) = 𝒇𝑇(𝑥)𝜷 + 𝒛(𝑥),          (2) 

 

where 𝒛(𝑥) is the realization of the stochastic process, 𝒇𝑇(𝑥) is a polynomial vector of training sample x, and β is the 

coefficient of the linear regression. The 𝒇𝑇(𝑥) term approximates the drift of the Kriging model, and 𝒛(𝑥) approximates 

the local deviation of the Kriging model. In the Kriging model, a set of sample data x, with the observed responses y, 

should be used to make a model allowing to predict the response in a new point x. First, it is necessary to correlate each 

sample data with each other, using the basis function, 

 

𝐶𝑜𝑟[𝑿𝒊, 𝑿𝒍] = 𝑒− ∑ θ𝑗(𝑥𝑗
𝑖𝑘

𝑗=1 −𝑥𝑗
𝑙)2

 ,         (3) 

 

where 𝑥𝑗
𝑖  and 𝑥𝑗

𝑙  are two training samples, 𝑘 is the number of design variables and θ𝑗  is the unknown coefficient of 

correlation. Then, the correlation matrix with all observed data can be constructed, 

 

𝚿 = (
𝑐𝑜𝑟[(𝑥1), (𝑥1)] ⋯ 𝑐𝑜𝑟[(𝑥1), (𝑥𝑛)]

⋮ ⋱ ⋮
𝑐𝑜𝑟[(𝑥𝑛), (𝑥1)] ⋯ 𝑐𝑜𝑟[(𝑥𝑛), (𝑥𝑛)]

) .       (4) 

 

And a covariance matrix, 

 

𝐶𝑜𝑣[𝑿, 𝑿] = 𝜎2𝚿.           (5) 

 

where, 𝜎2 is the square of the standard deviation. Then, the set of variables x is correlated in some way, described by 

the matrix 𝚿. These correlations depend on the absolute distance between the sample points and parameters theta. To 

find the better value for theta to fits the interpolation problem, it is necessary to maximize the likelihood of y. 

Therefore, the problem becomes an optimization problem with the form, 

 

𝑀𝑖𝑛 − ( −
𝑛

2
ln(𝜎 2) −

𝟏

𝟐
ln|𝚿|) ,         (6) 

 

𝜎2 =
(𝒚−𝟏𝜇)𝑇𝚿−1(𝒚−𝟏𝜇)

𝑛
 ,          (7) 

 

𝜇 =
1𝑇𝚿−1𝑦

1𝑇𝚿−1𝟏
,            (8) 

 

where 𝜇 is the mean and 1 is a vector of ones. To solve this optimization problem, global methods usually produces the 

best results, since it is not possible to differentiate the objective function. In this paper, a simple genetic algorithm is 

used to find the best theta vector. The detailed development of these calculation can be found on Forrester et al. (2008). 

When the Kriging model is constructed with the obtained θ𝑗, it can be used to predict the output response at untried 

location with unbiased estimation. The predicted response is given by, 

 

𝑌(𝑥) = 𝜇 + 𝜓𝚿−1(𝒚 − 𝟏𝜇),          (9) 

 

where, 𝜓 is the correlation vector of the untried location and the sample points. 

Therefore, once determined the values of theta for a given sample set, Kriging model can be used to predict any 

other point. In this study 20 sample points have been chosen randomly, and one Kriging model was developed for each 

natural frequency. Table 4 shows the results for each model. 

 

Table 4. Kriging model coefficients 

 

Mode θ1 θ2 θ3 θ4 

1 50.9819 0.0106 7.5364 8.8166 

2 0.2563 1.6861 0.2883 6.3691 

3 0.1800 0.1831 0.8422 1.6571 

4 50.5699 0.0015 0.0366 6.2119 

5 52.5642  0.4028 0.1510 6.6605 

6 53.9085 0.6790 0.1968 8.2307 

 

To verify the quality of the Kriging predictor, some checking points are evaluated and compared with results 

obtained by the FEM algorithm. Figure 2 presents the numerical data (FEM) and the values of the Kriging predictor. 
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Figure 2. Frequency values of the checking points. 

 

The Kriging model, constructed with the available data, demonstrates low error when predicting values between the 

points used to training the model. However, for the check point one, the design variables are out of the range used as 

data training, then the difference to the numerical model becomes higher. Therefore, these results show that the Kriging 

model is well conditioned to be used as predictor in the model update process. 

 

5. MODEL UPDATE USING KRIGING MODEL 

 

The model update process was modified to include the Kriging predictor, i.e., call the Kriging model in instead of 

the FEM. Then, the PSO algorithm searches for the best combination of design variables to fit the experimental results. 

A reduction in the computational time is expected, since the Kriging model is faster than FEM to make the calculations.  

In addition, using the Kriging model, the total time to carry out the model update procedure takes around 10 

minutes (desktop computer, memory: 4Gb, processor: intel i5). The design variables resulted from this process is 

presented in Table 5, and the comparison between the frequencies predicted with the Kriging model and the 

experimental data is presented in Table 6. Also, Figure 3 shows the convergence of the optimization algorithm. 

 

Table 5. Kriging model coefficients 

 

 E11[GPa] E22[GPa] G12[GPa] Thickness [mm] 

Plate 128,7924 9,1055 5,0954 3,3916 
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Table 6. Natural frequencies obtained with the Kriging model compared with the target experimental frequencies. 

 

 Experimental Kriging 
Relative 

Difference 

𝑓1 [Hz] 104.1520 104.3708 0.2101% 

𝑓2 [Hz] 139.8840 139.8839 -0.0001% 

𝑓3 [Hz] 261.0910 261.0917 0.0003% 

𝑓4 [Hz] 320.6900 320.6866 -0.0011% 

𝑓5 [Hz] 367.0790 367.4869 0.1111% 

𝑓6 [Hz] 411.4550 405.4654 -1.4557% 

 

 

 
 

Figure 3. Convergence of the PSO algorithm although iterations 

 

The result obtained by the model update using the Kriging model fits the experimental data relatively well. 

Considering only the Kriging predictor, the model update process has achieved response values with an error lower than 

0,1% in some modes. Finally, the design variables obtained in the model update using Kriging are used as input in the 

finite element algorithm. Table 7 shows the natural frequencies obtained using FEA, with the inputs defined by the 

model updating using Kriging, the relative difference presented in this table is in relation of the FEA results and the 

experimental data. 

 

Table 7.  Comparison between FEA results with experimental data and Kriging values. 

 

 
𝑓1 [Hz] 𝑓2 [Hz] 𝑓3 [Hz] 𝑓4 [Hz] 𝑓5 [Hz] 𝑓6 [Hz] 

Experimental 104.15 139.88 261.09 320.69 367.08 411.46 

FEA/Kriging 108.06 140.00 260.00 324.88 371.30 408.17 

Difference FEA vs 

Experimental 
3.7522% 0.0829% -0.4179% 1.3066% 1.1499% -0.7984% 

 

The model update using the Kriging model shows excellent results in relation to computational time and accuracy. 

This procedure can help to obtain a good approximation of values for design variables to be used in the computational 

model in instead of to carry out a complete model update using FEA. The final design variables configuration obtained 

with the procedure proposed in this paper, results in a better approximation for almost all modes, except for the first 

mode. This behavior could be due to the lack of quality of the training samples used for the Kriging model, which is not 

representing accurately the finite element model. 
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6. CONCLUSIONS 

 

Model update processes are very important in the engineering environment to calibrate numerical models. Using 

some experimental data and an optimization procedure, it is possible to adjust the design variables to obtain a numerical 

model equivalent to the physical phenomena. Metamodel techniques can simplify the FEA to a surrogate model as a fast 

running model which can facilitate the application of the intelligent algorithms in model updating. Reducing 

computational time and obtaining reliable results. This paper presented an analysis of a model update procedure 

replacing the FEA for a Kriging model. Comparisons about the relative difference obtained from the model update 

using FEA and the model update using Kriging have been done. The Kriging metamodel shows to be very promising to 

be used in instead of the FEA to carry out a quick update of the main design variables, and then, utilize it in the FEM. 

This procedure demonstrates to be very reliable, since the higher error obtained is around 3.7% and the lower one is 

about 0.08%. It is important to remark that no kind of pre-processing has been used to choose the best points to training 

the Kriging model, then future studies could be done to improve the results. This procedure can be used to define the 

parameters to be monitored in a SHM system, and also how these parameters have influence on the process, helping 

engineers to develop better SHM systems. 

 

7. REFERENCES 

 

Baruch, M. and Bar-Itzhack, I.Y. 1978. “Optimal weighted orthogonalization of measured modes”. AIAA Journal, Vol. 

16, p. 346–351. 

Berman, A. and Nagy, E.J. 1983 “Improvement of a large analytical model using test data”. AIAA Journal, Vol. 21, p. 

927–935. 

Collins, J.D., Hart, G.C., Hasselman, T.K. and Kennedy, B. 1974. “Statistical identification of structures”. AIAA 

Journal, Vol. 12, p. 185–190. 

Chen, J.C. and Garba, J. 1980. “Analytical model improvement using modal test results”. AIAA Journal, Vol. 18, p. 

684–690. 

De Munck, M., Moens, D., Desmet, W. and Vandepitte, D. 2008. “An adaptive Kriging based optimisation algorithm 

for interval and fuzzy FRF analysis”. In: Proceedings of ISMA2008 International Conference on Noise and 

Vibration Engineering, Leuven, Belgium. 

Dey, S., Mukhopadhyay, T. and Adhikari, S. 2015. “Stochastic free vibration analyses of composite shallow doubly 

curved shells – A Kriging model approach”. Composites Part B: Engineering, Vol. 70, p. 99-112. 

Forrester, A., Sobester, A. and Keane, A. 2008. Engineering design via surrogate modelling: A practical guide. John 

Wiley & Sons, United Kingdom, 1
st
 edition. 

Huang, D., Allen, T.T., Notz, W.I. and Zeng, N. 2006. “Global Optimization of Stochastic Black-Box Systems via 

Sequential Kriging Meta-Models”. Journal of Global Optimization. Vol 34, p. 441-466. 

Imregun, M. and Visser, W.J. 1991. “A review of model updating techniques”. The Shock and Vibration Digest, Vol. 

23, p. 9–20. 

Jeong, S., Murayama, M. and Yamamoto, K. 2005. “Efficient Optimization Design Method Using Kriging Model”. 

Journal of Aircraft, Vol. 42, p. 413-420. 

Khodaparast, H.H., Mottershead, J.E. and Badcock, K.J. 2011. “Interval model updating with irreducible uncertainty 

using the Kriging predictor”, Mechanical Systems and Signal Processing, Vol. 25, p. 1204–1226. 

Kim, K.O., Anderson, W.J. and Sandstorm, R.E. 1983. “Non-linear inverse perturbation method in dynamic analysis”. 

AIAA Journal, Vol. 21, p. 1310–1316. 

Lim, T.W. 1990. “Submatrix approach to stiffness matrix correction using modal test data”. AIAA Journal, Vol. 28, p. 

1123–1153. 

Liu, Y., Li, Y., Wang, D. and Zhang, S. 2014. “Model updating of complex structures using the combination of 

component mode synthesis and Kriging predictor”, The Scientific World Journal, Vol. ID 476219, p. 1-13. 

Mottershead, J.E. and Friswell, M.I. 1993. “Model updating in structural dynamics: a survey”. Journal of Sound and 

Vibration, Vol. 167, p.347–375. 

Shadan, F., Khoshnoudian, F., Inman, D.J. and Esfandiari, A. 2016. “Experimental validation of a FRF-based model 

updating method”. Journal of Vibration and Control, Vol. on line, 1-14. 

Simpson, T.W., Poplinski, J.D., Koch, P.N., Allen, J.K. 2001a. “Metamodels for computer-based engineering design: 

survey and recommendations”. Engineering with Computers, Vol. 17, p. 129–150. 

Simpson, T.W., Mauery, T.M., Korte, J.J. and Mistree, F. 2001b. “Kriging Models for Global Approximation in 

Simulation-Based Multidisciplinary Design Optimization”, AIAA Journal, Vol. 39, p. 2233-2241. 

Sipple, J.D. and Sanayei, M. 2014. “Finite element model updating of the UCF grid benchmark using measured 

frequency response functions”. Mechanical Systems and Signal Processing, Vol. 46, p. 179-190. 

Souza, L.F.S., Tita, V. and De Medeiros, R. 2017. “Sensitivity Analysis on Composite Plates by Using Design of 

Experiments”. In: Proceedings of the 6
th

 International Symposium on Solid Mechanics (MECSOL), Joinville Brazil. 



24th ABCM International Congress of Mechanical Engineering 
December 3-8, 2017, Curitiba, PR, Brazil 

Vaz Jr, M., Cardoso, E.L. and Stahlschmidt, J. 2013. “Particle swarm optimization and identification of inelastic 

material parameters”. Engineering Computations, Vol. 30, p. 936–960. 

Zang, C., Ma, S.C. and Friswell, M.I. 2012. “Structural model updating with an improved parameter selection method”. 

In: Proceedings of ISMA2012 International Conference on Noise and Vibration Engineering, Leuven, Belgium. 

Yuan, R. and Guangchen, B. 2009. “Comparison of Neural Network and Kriging Method for Creating Simulation 

Optimization Metamodels”. In: Proceedings of the Eighth IEEE International Conference on Dependable, 

Autonomic and Secure Computing, Chengdu, China. 

 

8. RESPONSIBILITY NOTICE 

 

The authors are the only responsible for the printed material included in this paper. 


